
handle: 10919/32581
This paper examines self-similar sets and some of their properties, including the natural equivalence relation found in bilipschitz equivalence. Both dimension and preservation of paths are determined to be invariant under this equivalence. Also, sophisticated techniques, one involving the use of directed graphs, show the equivalence of two spaces.
Master of Science
Bilipschitz Equivalence, Self-Similarity, Cantor Sets
Bilipschitz Equivalence, Self-Similarity, Cantor Sets
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
