
handle: 10919/32160
Galois theory, the study of the structure and symmetry of a polynomial or associated field extension, is a standard tool for showing the insolvability of a quintic equation by radicals. On the other hand, the Inverse Galois Problem, given a finite group G, find a finite extension of the rational field Q whose Galois group is G, is still an open problem. We give an introduction to the Inverse Galois Problem and compare some radically different approaches to finding an extension of Q that gives a desired Galois group. In particular, a proof of the Kronecker-Weber theorem, that any finite extension of Q with an abelian Galois group is contained in a cyclotomic extension, will be discussed using an approach relying on the study of ramified prime ideals. In contrast, a different method will be explored that defines rigid groups to be groups where a selection of conjugacy classes satisfies a series of specific properties. Under the right conditions, such a group is also guaranteed to be the Galois group of an extension of Q.
Master of Science
Inverse Galois Theory, Rigid Groups, Kronecker-Weber Theorem
Inverse Galois Theory, Rigid Groups, Kronecker-Weber Theorem
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
