
handle: 10919/28351
This work develops theoretical and applied results for variational convex analysis. First we present the basic tools of analysis necessary to develop the core theory and applications. New results concerning duality principles for systems originally modeled by non-linear differential equations are shown in chapters 9 to 17. A key aspect of this work is that although the original problems are non-linear with corresponding non-convex variational formulations, the dual formulations obtained are almost always concave and amenable to numerical computations. When the primal problem has no solution in the classical sense, the solution of dual problem is a weak limit of minimizing sequences, and the evaluation of such average behavior is important in many practical applications. Among the results we highlight the dual formulations for micro-magnetism, phase transition models, composites in elasticity and conductivity and others. To summarize, in the present work we introduce convex analysis as an interesting alternative approach for the understanding and computation of some important problems in the modern calculus of variations.
Ph. D.
Banach spaces, calculus of variations, duality, convex formulations
Banach spaces, calculus of variations, duality, convex formulations
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
