Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Norwegian Open Resea...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Information Retrieval Models and Relevancy Ranking

Authors: Norozi, Muhammad Ali;

Information Retrieval Models and Relevancy Ranking

Abstract

In "Information Retrieval", relevance is a numerical score assigned to a search result, representing how well the results meet the information need of the user that issued the search query. In many cases, a result's relevance determines the order in which it is presented to the user. In this thesis we have explored the information retrieval models in general and relevancy ranking within information retrieval in particular. Several mathematical tools have been used in research for improving the relevancy ranking models. A simple yet useful type of relevancy models are based on viewing each document and each query as elements in a high dimensional vector space, and using the angle between the document and the query as a measure of similarity. More advanced concepts in linear algebra, such as the Singular Value Decomposition, and theory of Markov chains have also been employed for innovating relevancy ranking. Some of researches have also suggested and which is also true to certain extent that probability theoretic based models, such as inference and neural networks are the best theoretical foundation for relevancy ranking models. A particularly important question is how to assess the "goodness" of a relevancy model. There is also a greater need to focus on eff ective and optimized implementations, such as query latency times should be in the sub-second domain. Theoretically \recall" and \precision" are used as measures for analyzing the effectiveness of a relevancy ranking models. But with the advent of new and sophisticated models there is a need to have a better framework for evaluation.

Country
Norway
Related Organizations
Keywords

VDP::410, mekanikk, 004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green