Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Diposit Digital de l...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Recolector de Ciencia Abierta, RECOLECTA
Doctoral thesis . 2023
License: CC BY NC ND
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Recolector de Ciencia Abierta, RECOLECTA
Doctoral thesis . 2023
License: CC BY NC ND
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermodynamics and Kinetics of Nucleic Acids Folding

Authors: Rissone, Paolo;

Thermodynamics and Kinetics of Nucleic Acids Folding

Abstract

[eng] This doctoral work investigates nucleic acids' thermodynamic and kinetic properties. The main objective is the characterization of the energetics and the folding mechanisms driving the hybridization of DNA and RNA molecules. A rigorous study of these processes is key to understanding the diversity of behaviors observed for nucleic acids and predicting their main features. The thesis is organized into four main parts. In Part I, we overview single-molecule force spectroscopy and some of the most common and relevant experimental techniques (Chapter 2). Among these, we describe optical trapping with laser optical tweezers, the experimental method used to carry out this work. The experimental setup is also accurately described (Chapter 3). Then, we discuss the biological concepts and the statistical tools used in the thesis. This includes fluctuation relations (Chapter 4), nucleic acids structure, thermodynamic modeling of the unzipping experiments (Chapter 5), and the transition state theory for two-state systems in thermodynamic equilibrium (Chapter 6). In Part II, we report the results of calorimetry force spectroscopy experiments on long DNA hairpins. We studied the temperature dependence of free energy, entropy, and enthalpy by carrying out unzipping experiments in the temperature range of 7 – 42°C. Even though the effects of temperature are known to be non-negligible, an accurate characterization of the thermodynamics parameters at the single base pair level still needs to be improved. Therefore, we developed a powerful method to accurately assess the temperature dependence of the entropy and enthalpy parameters, ultimately permitting us to measure the specific heat change per base pair. In Part III, we report the study of the energetics and kinetics of RNA folding, focusing on the complex mechanisms underlying RNA hybridization. By mechanically unzipping a long RNA hairpin, we derived the ten nearest-neighbor base pair RNA free energies in sodium and magnesium (Chapter 8). To characterize the irreversibility of the unzipping–rezipping process and the folding dynamics, we hypothesize that stem-loops structures forming along the unpaired RNA strands drive the folding (Chapter 9). This phenomenon is modeled by introducing a barrier energy landscape of the stem-loop structures forming along the complementary strands, which compete against the formation of the native hairpin. Finally, in Part IV, the results of pulling experiments of short RNA hairpins at low temperatures are reported. After reaching 5 – 7°C, short RNA sequences designed to fold as simple duplexes exhibit misfolded states competing with the native fold. Despite different sequences forming different misfolded structures, all of them share common features: they are very compact and brittle, and their stability does not depend on the presence of monovalent or divalent ions. RNA cold misfolding appears to be a general phenomenon questioning our understanding of RNA folding.

[spa] En este trabajo doctoral se han investigado las propiedades termodinámicas y cinéticas de los ácidos nucleicos. El principal objetivo era el estudio de los mecanismos de plegamiento que se llevan a cabo en la hibridación de moléculas de ADN y ARN y su caracterización energética. La tesis está organizada en cuatro partes principales. En la Parte I, repasamos la espectroscopia de fuerza de molécula única y algunas de las técnicas experimentales más relevantes en el estudio del plegamiento de ácidos nucleicos (Capítulo 2), enfocándose en las pinzas ópticas (método experimental utilizado en esta tesis) (Capítulo 3). Además, se introducen los conceptos biológicos y las herramientas estadísticas utilizadas en la tesis, incluyendo los teoremas de fluctuación (Capítulo 4), la estructura de ácidos nucleicos, el modelo termodinámico de los experimentos de desplegamiento mecánico (Capítulo 5) y la teoría de los estados de transición (Capítulo 6). En la Parte II, reportamos los resultados de experimentos de calorimetría con pinzas ópticas sobre horquillas largas de ADN en un rango de temperaturas de 7 – 42 °C. Se ha estudiado la dependencia con la temperatura de la energía libre, la entropía y la entalpía. Hemos desarrollado un metodología para evaluar con precisión la dependencia de la temperatura de la entropía y entalpía, y finalmente medir el cambio del calor específico nivel de par de bases individuales. La Parte III, describe el estudio termodinámico y cinético del plegamiento del ARN, centrándonos en los mecanismos complejos que subyacen en su hibridación. Desplegando mecánicamente una horquilla larga de ARN, derivamos los diez parámetros de energías libres de ARN en sodio y magnesio (Capítulo 8). Para caracterizar la irreversibilidad del proceso de desplegamiento-plegamiento y su dinámica, planteamos la hipótesis de que la formación de “bucles en las hebras” desapareadas (stem-loops) de ARN impulse la formación de la horquilla (Capítulo 9). Este fenómeno se modela mediante la introducción de un paisaje de energía de los stem-loops que se forman a lo largo de las hebras complementarias, compitiendo contra la formación de la horquilla nativa. Finalmente, en la Parte IV, se reportan los resultados experimentales de desplegamiento de moléculas cortas de ARN a bajas temperaturas. Entre 5 y 7 °C, diferentes secuencias cortas de ARN diseñadas para plegarse en horquillas simples exhiben estados mal plegados que compiten con el estado nativo. Todas las secuencias estudiadas comparten características comunes: son compactas y frágiles, y su estabilidad no depende de la presencia de iones mono o divalentes. El mal plegamiento en frío del ARN parece ser un fenómeno general que cuestiona nuestra comprensión del plegamiento del ARN.

Programa de Doctorat en Física

Related Organizations
Keywords

Espectroscòpia molecular, Espectroscopia molecular, Àcids nucleics, Termodinámica, Biophysics, Mecánica estadística, Biofísica, Molecular spectroscopy, 538.9, Ciències Experimentals i Matemàtiques, Nucleic acids, Mecànica estadística, Termodinàmica, Ácidos nucleicos, Thermodynamics, Statistical mechanics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 162
    download downloads 303
  • 162
    views
    303
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
162
303