
handle: 10773/6619
In this chapter we summarize results in extreme value theory, which are primarily based on the condition that the upper tail of the underlying df is in the δ-neighborhood of a generalized Pareto distribution (GPD). This condition, which looks a bit restrictive at first sight (see Section 2.2), is however essentially equivalent to the condition that rates of convergence in extreme value theory are at least of algebraic order (see Theorem 2.2.5). The δ-neighborhood is therefore a natural candidate to be considered, if one is interested in reasonable rates of convergence of the functional laws of small numbers in extreme value theory (Theorem 2.3.2) as well as of parameter estimators (Theorems 2.4.4, 2.4.5 and 2.5.4).
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
