Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Recolector de Ciencia Abierta, RECOLECTA
Conference object . 2000
License: CC BY NC ND
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Recolector de Ciencia Abierta, RECOLECTA
Conference object . 2000
License: CC BY NC ND
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation of fatigue life data by normalising procedures

Authors: Castillo, E.; Aenlle López, Manuel; Lamela Rey, María Jesús; Fernández Canteli, Alfonso Carlos;

Evaluation of fatigue life data by normalising procedures

Abstract

Structures and mechanical components are frequently submitted to loads of variable amplitudes and of a random nature. The corresponding fatigue life prediction has to be analysed by means of damage accumulation models which utilise as basic information the S-N field of the material, determined from fatigue life tests conducted at various different constant stress ranges. Thus, the reliability of the life prediction under variable amplitude loading depends to a great extent on the quality of the estimation of the parameters related to the S-N field. Accordingly, a statistical non-linear regression analysis of the fatigue results is needed on account of the limited number of fatigue results spread over several stress ranges and of the considerable scatter of the results within each stress range. Since two random variables have to be considered − the stress range ∆σ or the stress level σ, depending on the material tested, and the number of cycles to failure N − two different statistical distributions, F(N; ∆σ), representing the number of cycles to failure given the stress range ∆σ, or else E(∆σ; N), representing the stress range given the number of cycles to failure, could be envisaged. Both distributions must fulfil physical and statistical conditions for the statistical model to be valid. In this paper, a consistent statistical model for analysing the S-N field is presented as well as methods for estimating the model parameters, based on normalising test data. Additionally, damage indices identified as the normalised variables are defined and their interpretation discussed

13th European Conference on Fracture, San Sebastian (Spain)

Country
Spain
Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green