
handle: 10609/97546
This paper explores the analysis and evaluation of machine learning algorithms that are able to recognize fraudulent credit card transactions. A study will be conducted about the different machine learning algorithms to determine the fraudulent transactions. Similarly, the results of the different algorithms will be compared to obtain a conclusion. To realice the study, a Credit Card Fraud dataset is used. This dataset contains 284,807 different transactions realized along two days. 492 of these transactions are fraudulent.
El presente trabajo está centrado en la evaluación y análisis de algoritmos de machine learning capaces de detectar un uso fraudulento en las transacciones realizadas con tarjetas bancarias. Se realizará un estudio de diferentes algoritmos de machine learning, de tal forma que, tras seleccionar uno de los algoritmos de machine learning, se consiga determinar qué tipo de transacciones son fraudulentas.
El present treball està centrat en l'avaluació i anàlisi d'algoritmes de machine learning capaços de detectar un ús fraudulent en les transaccions realitzades amb targetes bancàries. Es realitzarà un estudi de diferents algoritmes de machine learning, de tal manera que, després de seleccionar un dels algoritmes de Machine learning, s'aconsegueixi determinar quin tipus de transaccions són fraudulentes.
machine learning, fraud detection, Seguridad informática -- TFM, detecció de fraus, aprendizaje automático, Seguretat informàtica -- TFM, seguretat informàtica, Computer security -- TFM, detección de fraudes, seguridad informática, aprenentatge automàtic, computer security
machine learning, fraud detection, Seguridad informática -- TFM, detecció de fraus, aprendizaje automático, Seguretat informàtica -- TFM, seguretat informàtica, Computer security -- TFM, detección de fraudes, seguridad informática, aprenentatge automàtic, computer security
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
