Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scientific Electroni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

Adaptación de algoritmos genéticos en la simulación del comportamiento estratégico de los agentes contaminadores ante el cobro de tasas retributivas

Authors: Méndez Sayago, Jhon Alexander;

Adaptación de algoritmos genéticos en la simulación del comportamiento estratégico de los agentes contaminadores ante el cobro de tasas retributivas

Abstract

La legislación ambiental colombiana ha acudido al instrumento económico denominado tasas retributivas -fundamentado en el mecanismo propuesto por Baumol y Oates, en su trabajo de 1973-, para regular la contaminación de los cuerpos de agua. El artículo emplea los algoritmos genéticos estándar para simular el comportamiento de un conjunto de empresas artificiales con vertimientos contaminantes sobre cuerpos de agua, ante el cobro de un impuesto uniforme, con las mismas características que las tasas retributivas. Las simulaciones intentan reproducir el comportamiento de las empresas bajo distintos escenarios de aplicación del instrumento, con el propósito de evaluar su eficiencia y proponer medidas tendientes a mejorarlo. La necesidad de esa evaluación surge del comportamiento estratégico de las empresas contaminadoras, no contemplado por Baumol y Oates y originado por su racionalidad limitada, y del cumplimiento parcial de la autoridad ambiental de sus actividades de facturación y monitoreo. Se concluye que ante el comportamiento estratégico de los contaminadores, un mayor impuesto a la contaminación no declarada elevaría la efectividad del instrumento de control. olombian environmental legislation has resorted to an economic instrument called retribution tax -based on the mechanism proposed by Baumol and Oates in their 1973 paper-, to regulate the contamination of bodies of water. This article employs standard genetic algorithms to simulate the behavior of a set of artificial companies that spill contaminants into bodies of water, when they are faced with a uniform tax charge with the same characteristics as the retribution tax. The simulations are aimed at reproducing company behavior in distinct tax application scenarios, for the purpose of evaluating their efficiency and proposing measures aimed at improvement. Such assessment is needed because the contaminating companies have adopted a strategic behavior that Baumol and Oates did not contemplate. It is due to the companies’ limited rationality and to the environmental authority’s but partial compliance with its invoicing and monitoring activities. The article concludes that, faced with such strategic behavior by the contaminating agent companies, a non-declared higher contamination tax would increase the effectiveness of the control instrument.

Country
Colombia
Related Organizations
Keywords

social learning, Retribution tax, 330, racionalidad limitada, tasas retributivas, limited rationality, algoritmos genéticos, aprendizaje social, genetic algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green