Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Universidade de Lisb...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Drug repurposing

Authors: Santos, Margarida Pinheiro dos;

Drug repurposing

Abstract

The aim of this discussion was to explore the concept and purpose of repositioning drugs, understand the boundaries that still underlie the technique and, analyze repurposed drugs, so they can serve of inspiration for the future of drug discovery and development. Drug repurposing, often also mentioned as drug repositioning is defined as the rational use of know drugs for new indications in order to increase pharmaceutical industry productivity and deliver therapeutic options to patients who suffer from chronic, orphan, neglected, rare, untreatable diseases or pathologies with poor therapeutic approaches. The limitations of this method are the same as in de novo drug development, the idiosyncrasy of both the disease and patient, the acquired resistance to therapy, the bureaucracy implicated in the submission of a drug's approval request and the lack of scientific knowledge to target certain pathologies, makes it hard and risky to develop and commercialize whether a new molecule or an old drug for a new indication. The methods of drug repositioning may be classified in treatment oriented, disease or drug oriented. The methodologies may not require an elevated level of scientific knowledge as serendipity testing or may, on the other hand, demand the comprehension of the shape and binding properties of the substance, as molecular docking. Drug repositioning presented the community with useful therapeutic approaches and, at the same time, has increased the profit of drugs which had been already abandoned. Examples such as thalidomide, a drug created for motion-sickness that was found to be teratogenic, it was later on repurposed for multiple myeloma. Sildenafil, a drug that started out as a low efficacy anti-anginous, but proved to be useful in erectile dysfunction and in pulmonary hypertension. Duloxetine, an old anti- depressant repurposed to syndrome of urinary incontinence, neuropathic pain and to generally anxiety disorder in children, due to one same mechanism of action. Drug repurposing is a fructuous approach for the development of new therapeutics, nevertheless several points have to be enlightened and simplified. Protocols of methods have to be created in order to achieve maximization of time and costs. The legal framework should be simplified, by reducing the heterogeneity between international agencies.

Trabalho Final de Mestrado Integrado, Ciências Farmacêuticas, Universidade de Lisboa, Faculdade de Farmácia, 2015

Related Organizations
Keywords

Ciências da Saúde, New indications, Drug discovery, Extension, Repositioning, Drug repurposing, Drug development, Mestrado Integrado - 2015

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Cancer Research
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!