Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Modelling realized variance when returns are serially correlated

Authors: Oomen, Roel C. A.;

Modelling realized variance when returns are serially correlated

Abstract

This article examines the impact of serial correlation in high frequency returns on the realized variance measure. In particular, it is shown that the realized variance measure yields a biased estimate of the conditional return variance when returns are serially correlated. Using 10 years of FTSE-100 minute by minute data we demonstrate that a careful choice of sampling frequency is crucial in avoiding substantial biases. Moreover, we find that the autocovariance structure (magnitude and rate of decay) of FTSE-100 returns at different sampling frequencies is consistent with that of an ARMA process under temporal aggregation. A simple autocovariance function based method is proposed for choosing the “optimal” sampling frequency, that is, the highest available frequency at which the serial correlation of returns has a negligible impact on the realized variance measure. We find that the logarithmic realized variance series of the FTSE-100 index, constructed using an optimal sampling frequency of 25 minutes, can be modelled as an ARFIMA process. Exogenous variables such as lagged returns and contemporaneous trading volume appear to be highly significant regressors and are able to explain a large portion of the variation in daily realized variance.

Dieser Artikel untersucht die Auswirkungen von autokorrelierten Erträgen auf das Maß der realisierten Varianz bei hochfrequenten Daten über die Erträge. Es wird gezeigt, dass die realisierte Varianz ein verzerrter Schätzer für die bedingte Varianz der Erträge bei Vorliegen von Autokorrelation ist. Unter Verwendung eines zehnjährigen Datensatzes von Minutendaten des FTSE-100 wird dargestellt, dass eine sorgfältige Auswahl der Stichprobenfrequenz unabdingbar zur Vermeidung von Verzerrungen ist. Eine einfache Methode zur Bestimmung der optimalen Stichprobenfrequenz, basierend auf der Autokovarianzfunktion, wird vorgeschlagen. Diese ergibt sich als die höchste Frequenz, bei der die vorhandene Autokorrelation noch einen vernachlässigbaren Einfluss auf das Maß der realisierten Varianz hat. Für den betrachteten Datensatz ergibt sich eine optimale Frequenz von 25 Minuten. Unter Verwendung dieser Frequenz können die logarithmierten Erträge des FTSE-100 als ARFIMA Prozess modelliert werden.

Keywords

market microstructure, High frequency data, ddc:330, temporal aggregation, long memory, High frequency data,realized return variance,market microstructure,temporal aggregation,long memory,bootstrap, realized return variance, bootstrap

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!