Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ uBibliorum Repositor...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mining the genome for ‘known unknowns’

Authors: Silva, Nicolas James Queirós da;

Mining the genome for ‘known unknowns’

Abstract

A bioinformática é uma área multidisciplinar que combina duas áreas fundamentais: biologia e ciências da computação. É uma das áreas de investigação que mais está a crescer nos dias de hoje. É também uma área fundamental para o processamento de dados e informação na área da genética. Um ramo prominente na área da bioinformática é a predição de genes. Várias ferramentas encontram-se disponíveis para auxiliar investigadores. Estas ferramentas também se encontram disponíveis ao público em geral. Embora existam várias ferramentas, as mais utilizadas já têm muitos anos. São ferramentas fiáveis porém algumas precisam de ser otimizadas e não são muito flexíveis no que toca à sua modificação. Neste trabalho de dissertação é proposto um novo modelo. Por meio da extração de ORFs a partir de sequências de DNA que codificam para proteínas, inserido pelo usuário em formato fasta, estes são comparados com uma sequência alvo escolhida pelo utilizador. Foi utilizado um Profile-HMM como modelo para comparar as sequências, em que um valor de probabilidade logarítmica (Logp) é devolvido consoante a semelhança entre as sequências comparadas: o ORF e a sequência alvo. Quanto mais semelhantes forem as sequências comparadas, melhor será o valor da probabilidade logarítmica. Foram criados vários cenários de modo a ver qual seria a melhor forma de implementar o Profile-HMM. Nestes, os estados de correspondência, inserção e deleção foram modificados, até chegar ao melhor cenário. O algoritmo de Viterbi foi utilizado para treinar o modelo, devido à sua velocidade. Os resultados obtidos pelo modelo foram concordantes com o que esperávamos: um ORF que está presente na sequência alvo terá um valor Logp melhor que um ORF que não está presente na sequência alvo.

Bioinformatics is a multidisciplinary area that combines two major areas: Biology and Computer Science. It’s one of the fastest rising areas of investigation nowadays. It’s also a fundamental area for the processing of data and information from discoveries in the genetics area. One area that is prominent in the bioinformatics area is gene prediction, where various tools are available to aid researchers. Even though there are several gene prediction tools available, the most used are from several years back. They are reliable tools, but need optimization and some are not so flexible for modification. Tools created in the past years base their model on previous tools. In this dissertation work, a new model is proposed. Through ORF extraction from proteincoding sequences of a fasta-formatted file that the user inputs, these are compared to a target sequence of the user’s choice. A profile-HMM is used as the model to compare the sequences, returning a Logp value for each ORF compared with the target sequence. Match, insert and delete state probabilities were modified, to find the best scenario. The Viterbi algorithm was used to train the model, due to its speed. The results obtained were concordant with what we expected: That an ORF, which would be in the target sequence, presented a better Logp value than an ORF from a randomly selected sequence.

Related Organizations
Keywords

Genoma Humano, Domínio/Área Científica::Ciências Médicas::Ciências Biomédicas, Algoritmo de Viterbi, Pomegranate, Predição de Genes, Open Reading Frame

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 40
    download downloads 42
  • 40
    views
    42
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
40
42
Green