Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Universidade de Lisb...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
UTL Repository
Master thesis . 2025
Data sources: UTL Repository
versions View all 2 versions
addClaim

Medicina personalizada no cancro

Authors: Letras, Margarida Isabel Vermelho;

Medicina personalizada no cancro

Abstract

A abordagem "one size fits all" em oncologia está a ser progressivamente substituída pela medicina personalizada, uma estratégia inovadora que beneficia dos avanços na farmacogenómica para proporcionar tratamentos adaptados às características individuais de cada paciente, com potencial para revolucionar o diagnóstico, prognóstico e tratamento do cancro. Este conceito promete transformar as intervenções médicas, ao proporcionar estratégias terapêuticas eficazes e adaptadas com base no perfil molecular de cada indivíduo, enquanto considera a situação pessoal e exposição ambiental do mesmo. Inevitavelmente, isto implica um aumento exponencial dos dados de saúde disponíveis, tornando essencial a aplicação de tecnologias como a inteligência artificial na sua análise para identificar padrões e otimizar intervenções terapêuticas. Os contínuos avanços tecnológicos nas abordagens genómicas e, mais recentemente, nas análises de outras ómicas (como a epigenómica, transcriptómica, proteómica e metabolómica) revelam também mecanismos cruciais no desenvolvimento do cancro, na resistência ao tratamento e no risco de recidiva, com várias descobertas já implementadas na prática clínica para guiar decisões de tratamento e personalizar terapias. A utilização de biópsias líquidas é também destacada como um método emergente que impacta o diagnóstico e o prognóstico do cancro, permitindo uma monitorização longitudinal da heterogeneidade tumoral de forma não invasiva e consequentemente, orientar as decisões terapêuticas. Para que a medicina personalizada seja efetivamente integrada nos sistemas de saúde, é fundamental que diversos stakeholders se envolvam ativamente. Nesse âmbito destaca-se a necessidade de desenvolver estratégias que capacitem os profissionais de saúde e promovam a sensibilização dos pacientes sobre os benefícios e implicações destas práticas. No que diz respeito aos farmacêuticos, a incorporação destas competências e conhecimentos reforça a sua posição estratégica e indispensável no sistema de saúde, potenciando o seu papel nas suas diversas áreas de atuação. Adicionalmente, é crucial superar desafios relacionados à integração de dados, incluindo questões éticas e a necessidade de estabelecer infraestruturas e regulamentações adequadas.

The "one size fits all" approach in oncology is progressively being replaced by personalized medicine, an innovative strategy that leverages advances in pharmacogenomics to provide treatments tailored to each patient’s individual characteristics, with the potential to revolutionize cancer diagnosis, prognosis, and treatment. This concept promises to transform medical interventions by delivering effective and customized therapeutic strategies based on each individual's molecular profile while considering personal circumstances and environmental exposures. Inevitably, this shift entails an exponential increase in available health data, making it essential to apply technologies such as artificial intelligence in data analysis to identify patterns and optimize therapeutic interventions. Continuous technological advancements in genomic approaches and, more recently, analyses from other omics (such as epigenomics, transcriptomics, proteomics, and metabolomics) also reveal critical mechanisms in cancer development, treatment resistance, and recurrence risk, with multiple findings already implemented in clinical practice to guide treatment decisions and personalize therapies. Liquid biopsies are also highlighted as an emerging method that impacts cancer diagnosis and prognosis, allowing longitudinal monitoring of tumor heterogeneity in a non-invasive approach and, consequently, guiding therapeutic decisions. For personalized medicine to be effectively integrated into healthcare systems, it is essential for various stakeholders to engage actively. In this regard, there is a need to develop strategies that empower healthcare professionals and promote patient awareness about the benefits and implications of these practices. For pharmacists, the incorporation of these skills and knowledge reinforces their strategic and indispensable position in the healthcare system, enhancing their role across various areas of practice. Additionally, it is crucial to overcome challenges related to data integration, including ethical issues and the need to establish adequate infrastructures and regulatory frameworks.

Trabalho Final de Mestrado Integrado, Ciências Farmacêuticas, 2024, Universidade de Lisboa, Faculdade de Farmácia.

Country
Portugal
Keywords

Biópsias Líquidas, Biomarcadores, Multi-ómica, Medicina personalizada, Mestrado Integrado - 2024, Domínio/Área Científica::Ciências Médicas::Ciências da Saúde, Cancro

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities
Cancer Research