
handle: 10366/167705
[ES] Este Trabajo Fin de M?ster plantea una metodolog?a basada en el uso de Big Data geoespacial para la estimaci?n de la humedad del suelo, un factor clave en la gesti?n ambiental, agricultura de precisi?n y estudios clim?ticos, utilizando t?cnicas de teledetecci?n satelital. La teledetecci?n se presenta como una alternativa eficaz a las mediciones in situ, ya que permite ofrecer una mayor cobertura geogr?fica y una monitorizaci?n temporal continua. La metodolog?a desarrollada integra ?ndices espectrales derivados de im?genes multiespectrales del sat?lite Sentinel-2, normalizados por la temperatura superficial obtenida a partir de datos del sat?lite Sentinel-3. Adem?s, se han incorporado datos in situ de humedad de la red REMEDHUS, que sirven tanto para el entrenamiento como para la validaci?n de los modelos. Para la estimaci?n de la humedad del suelo, se han implementado modelos de regresi?n basados en el algoritmo Random Forest, aprovechando su capacidad para capturar relaciones no lineales. El rendimiento de los modelos se ha evaluado mediante m?tricas estad?sticas est?ndar: el coeficiente de correlaci?n de Pearson (?), el coeficiente de determinaci?n (R?) y el error cuadr?tico medio (RMSD). Los resultados obtenidos evidencian que los ?ndices espectrales normalizados por temperatura superficial, particularmente el NDVI/LST y GCI/LST, alcanzan valores de ? ? 0,7 y R? ? 0,50, con RMSD promedios de 0,06 m?/m?. Estos valores son comparables o superiores a los reportados en estudios previos que emplearon metodolog?as m?s complejas. Asimismo, se ha comprobado que la normalizaci?n t?rmica mejora significativamente el ajuste de los modelos, con un incremento promedio de ?R? ? +0,13 y una reducci?n del RMSD de aproximadamente un 9 %. La metodolog?a propuesta se consolida como una herramienta eficiente y de bajo coste para el monitoreo de la humedad del suelo a escala local. Adem?s, la disponibilidad de datos de alta resoluci?n espacial y la automatizaci?n mediante algoritmos de aprendizaje autom?tico facilitar?an su aplicaci?n en la gesti?n de recursos h?dricos, el seguimiento de sequ?as y la toma de decisiones en la agricultura.
Trabajo de Fin de M?ster del M?ster en Geotecnolog?as cartogr?ficas en ingenier?a y arquitectura, curso...
Big Data, Random Forest, REMEDHUS, Sentinel-1, Sentinel-3, Sentinel-2, índices espectrales, humedad del suelo, ?ndices espectrales, temperatura superficial
Big Data, Random Forest, REMEDHUS, Sentinel-1, Sentinel-3, Sentinel-2, índices espectrales, humedad del suelo, ?ndices espectrales, temperatura superficial
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
