
handle: 10317/2539
Las máquinas de aprendizaje, y particularmente, las redes neuronales artificiales (RNA), tienen aplicación en multitud de problemas reales: control automático, detección de señales, estimación de variables financieras, filtros "antispam", etc. Una manera eficiente para mejorar la capacidad de generalización de una RNA es diseñar un conjunto de máquinas ("committee of machines" o "network ensambles"), cuya solución global es el resultado de combinar la estimación proporcionada por cada máquina. Este artículo propone un novedoso, rápido y eficiente método para el entrenamiento de comités de máquinas basado en el algoritmo "Extreme Learning Machine".
Asociación de Jóvenes Investigadores de Cartagena, (AJICT). Universidad Politécnica de Cartagena. Escuela Técnica Superior de Ingeniería Industrial UPCT, (ETSII). Escuela Técnica Superior de Ingeniería Agronómica, (ETSIA), Escuela Técnica Superior de Ingeniería de Telecomunicación (ETSIT). Cátedra Bancaja Jóvenes Emprendedores. Hero. Parque Tecnológico de Fuente Álamo. Grupo Aquiline.
Extreme learning machine, Perceptrones multicapa, Redes neuronales artificiales (RNA), Optimal Committe of Extreme Learning Machines (OCoELM), Neuronas
Extreme learning machine, Perceptrones multicapa, Redes neuronales artificiales (RNA), Optimal Committe of Extreme Learning Machines (OCoELM), Neuronas
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
