Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Recolector de Ciencia Abierta, RECOLECTA
Doctoral thesis . 2013
License: CC BY NC ND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DIGITAL.CSIC
Doctoral thesis . 2013 . Peer-reviewed
Data sources: DIGITAL.CSIC
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Recolector de Ciencia Abierta, RECOLECTA
Doctoral thesis . 2013
License: CC BY NC ND
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Síntesis de xerogeles de carbono inducida por microondas para su uso como electrodos en supercondensadores

Authors: Gómez Calvo, Esther;

Síntesis de xerogeles de carbono inducida por microondas para su uso como electrodos en supercondensadores

Abstract

[ES] La presente memoria se ha dividido en dos partes bien diferenciadas. En la primera parte se presenta una nueva tecnología que permite obtener xerogeles de carbono con propiedades diseñadas a medida, mientras que en la segunda se evalúan dichos xerogeles como material activo en supercondensadores. Con respecto a la fabricación de los materiales de electrodo, en este trabajo se ha desarrollado un novedoso método basado en el calentamiento con microondas que permite obtener xerogeles de carbono con propiedades análogas a los sintetizados mediante rutas convencionales, pero de una manera mucho más rápida y eficiente. La radiación microondas también ha sido utilizada como fuente de calor en procesos de activación, lo que ha permitido desarrollar notablemente la microporosidad de los xerogeles empleando tiempos de operación muy cortos. Los xerogeles de carbono así activados presentan áreas superficiales superiores a 2000 m2 g-1 y cierto contenido en mesoporos, características idóneas para la aplicación estudiada en este trabajo. En la segunda parte del trabajo se ha evaluado la capacidad de almacenamiento de energía de algunos xerogeles de carbono sintetizados en el laboratorio. Varias han sido las estrategias llevadas a cabo con el propósito de incrementar la cantidad de energía almacenada por el supercondensador, como son: empleo de materiales de electrodo de diferente porosidad; adición de compuestos conductores; preparación de celdas asimétricas (xerogel de carbono como electrodo negativo y MnO2 como electrodo positivo) y, finalmente; uso de electrolitos de diversa naturaleza (disoluciones acuosas de distinto pH y líquidos iónicos próticos formados por diferentes aniones/cationes). Así, por ejemplo, el empleo de electrodos desiguales o líquidos iónicos como electrolitos, hace que el supercondensador pueda funcionar correctamente al aplicar un voltaje de trabajo próximo a 1.6 V, en el primer caso, y superior a 2.0 V en el segundo, lo que tiene una repercusión positiva sobre su densidad de energía. La optimización de las propiedades de los xerogeles de carbono empleados como material de electrodo ha permitido alcanzar valores de capacidad específica elevados (~ 200 F g-1), pero además, dicha cantidad de energía se ha mantenido durante un número importante de ciclos de carga-descarga.

[EN] The present memory has been divided into two different sections, the first devoted to the production, by means of microwave technology, of carbon xerogels with tuneable properties, while the second is focused on the evaluation of these laboratory-synthesized carbon xerogels as active materials in supercapacitors. This work presents a novel method for the synthesis of carbon xerogels based on microwave heating. By means of this synthesis method, carbon xerogels with analogous properties to those obtained by conventional routes have been produced in a quicker and more efficient way. Microwave radiation has been also used as heating source in activation processes allowing the development of xerogels microporosity with much shorter operating times. The activated carbon xerogels obtained have displayed surface areas above 2000 m2 g-1 and certain presence of mesopores, textural properties highly suitable for the application proposed in this work. In the second section, the energy storage capacitance of several in-lab synthesized carbon xerogels has been evaluated. Various strategies have been carried out in order to improve the energy stored by the supercapacitor, such as: the use of electrode materials with different pore texture; the addition of highconductivity materials; the preparation of asymmetric cells (a carbon xerogel as negative electrode and MnO2 as the positive electrode) and, finally; the use of diverse electrolytes (aqueous solutions with different pH values and protic ionic liquids composed of different cations/anions). Thus, the use of unequal electrodes or ionic liquids as electrolyte produces supercapacitors that are able to operate effectively within a voltage window of 1.6 V, in the first case, and higher than 2.0 V in the second, which has a positive effect on their energy density. The properties optimization of carbon xerogel electrodes results in high values of specific capacitance (~ 200 F g-1) and, in addition, they are able to maintain such energy stored during a large number of charge-discharge cycles.

Tesis presentada en el Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica de la Universidad de Oviedo. Mayo de 2013

Peer reviewed

Country
Spain
Keywords

Tecnología de materiales, Propiedades de materiales, Microondas, Supercondensadores, Carbono, Carbon xerogels, Supercapacitors, Microwaves, Xerogeles de carbono, Sector de la energía

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 32
    download downloads 64
  • 32
    views
    64
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
32
64
Green