Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DIGITAL.CSICarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DIGITAL.CSIC
Article . 2021 . Peer-reviewed
Data sources: DIGITAL.CSIC
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Liquids
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Antimicrobial activity on phytopathogenic bacteria and yeast, cytotoxicity and solubilizing capacity of deep eutectic solvents

Authors: Elisa Rodríguez-Juan; Sergio López; Sergio López; Rocio Abia; Juan Fernández-Bolaños; Francisco J. G. Muriana; Aranzazu García-Borrego;

Antimicrobial activity on phytopathogenic bacteria and yeast, cytotoxicity and solubilizing capacity of deep eutectic solvents

Abstract

3 Figuras.-- 4 Tablas The toxicity on oenological yeasts and plant pathogens of eight deep eutectic solvents (DESs) composed of ChCl:Sucrose (1:2), ChCl:1,4-butanediol (1:5), ChCl:Xylitol (2:1), ChCl:1,2-propanediol (1:1), Fructose:Glucose:Sucrose (1:1:1), Betaine:Sucrose (2:1), Betaine:Sucrose (4:1) and Fructose-Glucose-Sucrose (2:3.6:1) was evaluated and compared with the classic solvents dimethylsulfoxide (DMSO), ethanol and glycerol. Most yeast and bacteria were tolerant to DESs consisting of three sugars in a concentration range of 75–600 x 103mg/L for yeasts and 75–1200 x 103mg/L for bacteria. These DESs showed less toxicity than glycerol or DMSO for most microorganisms. The effect of six DESs, ChCl:Sucrose (1:2), ChCl:Xylitol (2:1), Fructose:Glucose:Sucrose (1:1:1), Betaine:Sucrose (2:1), Betaine:Sucrose (4:1) and Fructose-Glucose-Sucrose (2:3.6:1) in different human cancer cell lines (Caco-2, HeLa and HepG2 cells), as well as in peripheral blood mononuclear cells (PBMCs) from healthy volunteers, was studied using flow cytometry. As a result, DESs at concentrations below 1%, affected tumor cells; however, healthy PBMCs were unaffected. In addition, the solubility of poorly-soluble subtances in water (quercetin, phenylmethylsulfonyl fluoride (PFMS), camptothecin (CPT), oleanolic acid, palmitic acid and Red O oil) was evaluated in all DESs previously tested plus two organic acidbased DESs, Betaine:Levulinic acid (1:2) and ChCl:Glycolic acid:Oxalic acid (1:1.6:0.4). All they were compared with conventional solvents (water, DMSO or ethanol) to determine their efficacy as drug solvents. As a result, DESs solubilized quercetin and CPT in the same range as conventional solvents. The antioxidant properties of quercetin solubilized in two DESs and in DMSO were studied in Caco-2 cells. A solution of tert-butyl hydroperoxide (TBH) was used as an inducer of intracellular reactive oxygen species (ROS), resulting in that quercetin's ability to reduce ROS production did not differ when it was solubilized in DESs or DMSO. In this study, we determined the low toxicity of the DESs analyzed on oenological yeasts, phytopathogenic microorganisms and on healthy human cells. The toxicity of DESs on cancer cell lines was also showed. In addition, the ability of DESs to dissolve poorly water-soluble compounds or other substances of interest was also demonstrated, suggesting their use as safe solvents or cryoprotectors useful at an industrial level. This work was supported by the Spanish Government (AGL2016-79088-R and AGL2016-80852-R) and by the Spanish FPI funding program (MEIC) (BES-2017–079648). Sergio Lopez thanks the ‘V Own Research Plan’ of the University of Seville (VPPI‐US) contract (co-founded by the European Social Fund). Peer reviewed

Country
Spain
Keywords

Deep eutectic solvent, Cell toxicity, Solubility, Antimicrobial activity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 79
    download downloads 169
  • 79
    views
    169
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
32
Top 10%
Average
Top 10%
79
169
Green