
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A specific Mg2+-dependent bis(5'-adenosyl)-triphosphatase (EC 3.6.1.29) was purified 270-fold from Escherichia coli. The enzyme had a strict requirement for Mg2+. Other divalent cations, such as Mn2+, Ca2+, or Co2+, were not effective. The products of the reaction with bis(5'-adenosyl) triphosphate (Ap3A) as the substrate were ADP and AMP in stoichiometric amounts. The Km for Ap3A was 12 +/- 5 microM. Bis(5'-adenosyl) di-, tetra-, and pentaphosphates, NAD+, ATP, ADP, AMP, glucose 6-phosphate, p-nitrophenylphosphate, bis-p-nitrophenylphospate, and deoxyribosylthymine-5'-(4-nitrophenylphosphate) were not substrates of the reaction. The enzyme had a molecular mass of 36 kilodaltons (as determined both by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis), an isoelectric point of 4.84 +/- 0.05, and a pH optimum of 8.2 to 8.5. Zn2+, a known potent inhibitor of rat liver bis(5'-adenosyl)-triphosphatase and bis(5'-guanosyl)-tetraphosphatase (EC 3.6 1.17), was without effect. The enzyme differs from the E. coli diadenosine 5',5'''-P1, P4-tetraphosphate pyrophosphohydrolase which, in the presence of Mn2+, also hydrolyzes Ap3A.
Adenine Nucleotides, Hydrogen-Ion Concentration, Phosphoric Monoester Hydrolases, Acid Anhydride Hydrolases, Substrate Specificity, Molecular Weight, Zinc, Escherichia coli, Magnesium, Isoelectric Point, Dinucleoside Phosphates
Adenine Nucleotides, Hydrogen-Ion Concentration, Phosphoric Monoester Hydrolases, Acid Anhydride Hydrolases, Substrate Specificity, Molecular Weight, Zinc, Escherichia coli, Magnesium, Isoelectric Point, Dinucleoside Phosphates
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
views | 32 | |
downloads | 19 |