Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DIGITAL.CSIC
Part of book or chapter of book . 2021
Data sources: DIGITAL.CSIC
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Preface-Homologous Recombination

Authors: Aguilera, Andrés; Carreira, Aura;

Preface-Homologous Recombination

Abstract

DNA double-strand breaks (DSBs) are the most harmful lesions to DNA in the cell. To cope with these insults, all organisms have devised two main types of evolutionary conserved mechanisms for their repair, homologous recombination (HR), and non-homologous end joining (NHEJ). The first one operates predominantly during the S/G2 phase of the cell cycle, when the sister chromatid is available for repair. Because HR requires homology for repair, this pathway is considered essentially error-free. NHEJ is the pathway of choice in the other phases of the cell cycle, including G1. This pathway is generally faithful but can be prone to errors. Most spontaneous DNA breaks arising in somatic cells occur randomly as a consequence of DNA replication failure caused by either DNA lesions or generated by obstacles that impede the progression of the replication fork (e.g., protein-bound to DNA, DNA secondary structures, replication–transcription conflicts, etc.). For this reason, HR is a major DNA repair pathway during S/G2 phases of the cell cycle. Thus, HR is intimately ligated to the prevention of genome instability in replicating somatic cells. In meiotic cells however, DSBs are developmentally controlled by the action of specific endonucleases where HR is essential; gametogenesis is not possible in the absence of HR. Genome instability and in particular defective HR is a common feature of a number of genetic diseases including cancer. Defects in HR in meiotic cells can lead to birth defects such as Down syndrome. Considering the relevance of HR as one of the major DSB repair pathways in mitotically cycling cells, as well as its essential role in meiosis, understanding the molecular mechanisms and factors that participate in HR is of key importance in Molecular Biology and Biomedicine. In this book, we compile a series of laboratory protocols covering the analysis of different steps of the homologous recombination process from the genetic, molecular biology, and cell biology perspectives. As these steps are very well conserved through evolution, taking advantage of different model organisms have led to accelerated discoveries in this field. Thus, when appropriate, some of the protocols we present here are explained in the context of more than one model system. We hope this book will facilitate the use of both classical and more recent approaches to answer specific questions on HR mechanisms as well as to decipher the function of novel factors involved in HR. We expect that this compilation of protocols elaborated by leading experts in the field will be useful not only to the scientific community working in genome integrity but also to scientists working in other areas such as cancer biology or cell cycle with renovated interests in HR and DSB repair.

Country
Spain
Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 74
    download downloads 70
  • 74
    views
    70
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
74
70
Green
Related to Research communities
Cancer Research