Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DIGITAL.CSIC
Conference object . 2020 . Peer-reviewed
Data sources: DIGITAL.CSIC
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Purification of surface-modified arc-discharge single-walled carbon nanotubes by centrifugation processes

Authors: Ansón-Casaos, Alejandro; González Domínguez, José Miguel; Lafragüeta, Ignacio; Martínez Fernández de Landa, María Teresa;

Purification of surface-modified arc-discharge single-walled carbon nanotubes by centrifugation processes

Abstract

Arc-discharge single-walled carbon nanotubes (SWCNTs) demonstrate well-defined spectroscopic responses and a high structural quality. In addition, the arc-discharge technique allows the synthesis of relatively large amounts of material, and the product is available at moderate prices. However, pristine arc-discharge SWCNTs contain large amounts of impurities, including catalyst metals, graphitic particles, and amorphous carbon. Well-purified commercial samples are expensive since current purification processes are time consuming and have low yields. Liquid media, which are necessary for the purification, change the physical aggregation of the SWCNTs or modify its chemical reactivity. Therefore, chemical studies on high-purity arc-discharge SWCNTs are limited. In this communication, we present our results on SWCNT purification by centrifugation or ultracentrifugation in aqueous media. More specifically, we study the influence of surface chemistry on the separation of arc-discharge SWCNTs from their impurities during the centrifugation. The results of processing chemically modified materials are analyzed in terms of graphitic and amorphous carbon impurities, residual metal content, and SWCNT spectral characteristics.

Talk delivered at GDR-I GNT2013 conference, held at Guidel-Plages (France), from 8th-12th April 2013.

Peer reviewed

Country
Spain
Keywords

Carbon nanotubes, Purification, Separation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 14
    download downloads 26
  • 14
    views
    26
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
14
26
Green