
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1063/1.5081132
handle: 10261/214562
We report the results from the application of our optical potential and relativistic optical potential (ROP) methods to electron–magnesium scattering. The energy range of this study was 0–5000 eV, with the results for the integral elastic cross sections, summed discrete electronic-state excitation integral cross sections, momentum transfer cross sections, and total ionisation cross sections being reported. Where possible, we compare the present results to the available experimental data and to the earlier results from close coupling and R-matrix type computations. Typically, a quite fair level of accord is found between our ROP calculations and the earlier theoretical and experimental cross sections. Additionally, from the assembled database, we provide for the modeling community some recommended cross section sets for use in their simulations, in which magnesium is a constituent. Electron transport coefficients are subsequently calculated for reduced electric fields ranging from 0.1 to 1000 Td using a multi-term solution of Boltzmann’s equation. Substantial differences in the transport coefficients between the ROP calculations and the recommended cross sections are observed over the range of fields considered, clearly illustrating the importance of the veracity of the database in the simulations.
Electron transport, Magnesium, Electron scattering cross sections, Recommended cross sections, 541
Electron transport, Magnesium, Electron scattering cross sections, Recommended cross sections, 541
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
views | 39 | |
downloads | 74 |