Downloads provided by UsageCounts
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Chagas disease and leishmaniasis are tropical neglected diseases caused by kinetoplastids protozoan parasites of Trypanosoma and Leishmania genera, and a public health burden with high morbidity and mortality rates in developing countries. Among difficulties with their epidemiological control, a major problem is their limited and toxic treatments to attend the affected populations; therefore, new therapies are needed in order to find new active molecules. In this work, sixteen Laurencia oxasqualenoid metabolites, natural compounds 1-11 and semisynthetic derivatives 12-16, were tested against Leishmania amazonensis, Leishmania donovani and Trypanosoma cruzi. The results obtained point out that eight substances possess potent activities, with IC50 values in the range of 5.40-46.45 µM. The antikinetoplastid action mode of the main metabolite dehydrothyrsiferol (1) was developed, also supported by AFM images. The semi-synthetic active compound 28-iodosaiyacenol B (15) showed an IC50 5.40 µM against Leishmania amazonensis, turned to be non-toxic against the murine macrophage cell line J774A.1 (CC50 > 100). These values are comparable with the reference compound miltefosine IC50 6.48 ± 0.24 and CC50 72.19 ± 3.06 μM, suggesting that this substance could be scaffold for development of new antikinetoplastid drugs.
Trypanosoma, Cell Survival, Trypanosoma cruzi, Antiprotozoal Agents, Marine polyether, Laurencia, Cell Line, Mice, Structure-Activity Relationship, Parasitic Sensitivity Tests, Animals, Oxasqualenoids, Leishmanicidal, Leishmania, Dose-Response Relationship, Drug, Molecular Structure, Kinetoplastids, Trypanocidal, Triterpenes, Marine natural products, Ethers
Trypanosoma, Cell Survival, Trypanosoma cruzi, Antiprotozoal Agents, Marine polyether, Laurencia, Cell Line, Mice, Structure-Activity Relationship, Parasitic Sensitivity Tests, Animals, Oxasqualenoids, Leishmanicidal, Leishmania, Dose-Response Relationship, Drug, Molecular Structure, Kinetoplastids, Trypanocidal, Triterpenes, Marine natural products, Ethers
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 35 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 74 | |
| downloads | 116 |

Views provided by UsageCounts
Downloads provided by UsageCounts