Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DIGITAL.CSIC
Conference object . 2018 . Peer-reviewed
Data sources: DIGITAL.CSIC
versions View all 2 versions
addClaim

Viscosidad intracelular en Procariotas

Authors: Cuecas, Alba; González Grau, Juan Miguel;

Viscosidad intracelular en Procariotas

Abstract

El citoplasma es un sistema altamente complejo donde se lleva a cabo el metabolismo celular. Se considera que el citoplasma presenta una consistencia similar a un gel más que a una solución acuosa diluida. Esto podría influir el comportamiento de distintas biomoléculas. La viscosidad del citoplasma en eucariotas se ha determinado recientemente1 pero no así en procariotas. Conocer la viscosidad intracelular es necesario para analizar el comportamiento de numerosas biomoléculas. La viscosidad se reduce exponencialmente al aumentar la temperatura lo que conlleva consecuencias críticas para el mantenimiento del metabolismo celular, por ejemplo en termófilos. Previamente2 hemos citado el efecto estabilizador que presenta la viscosidad para diversas biomoléculas de pequeño tamaño (por ejemplo, NADH, ATP, etc.). Por tanto, es importante determinar la viscosidad intracelular para estudiar la posible estabilización de biomoléculas en condiciones de baja o alta temperatura y evaluar la capacidad de procariotas para responder a cambios de temperatura. Utilizando un rotor molecular fluorescente (RY3)1,3 se determinó la viscosidad intracelular de distintos procariotas desde 10ºC a 100ºC. Se analizaron las bacterias Escherichia coli, Pseudomonas aeruginosa, Lactococcus lactis lactis, Geobacillus thermoglucosidasius, Fervidobacterium thailandense y la arquea Pyrococcus furiosus. Las cubiertas celulares son permeables a RY3 por lo que la viscosidad intracelular puede determinarse a partir de medidas de fluorescencia realizadas por espectrofluorometría y por FLIM (Fluorescence Lifetime Imaging)3. Algunas bacterias son capaces de regular su viscosidad intracelular en función de la temperatura ambiental, como Lactococcus. Las bacterias parecen presentar una viscosidad relativamente elevada (superior al agua) aunque Escherichia y Pseudomonas eran excepciones con viscosidad similar al agua. Pyrococcus indicaba que debido a que la viscosidad varía mínimamente por encima de 80ºC, cambios de viscosidad celular no serían eficientes. Estos resultados confirman que la regulación de la viscosidad intracelular puede ser un mecanismo para el mantenimiento de las funciones celulares a alta y baja temperatura, incluyendo la estabilización de pequeñas biomoléculas hasta aproximadamente 80ºC. Bibliografía: 1 Peng, X et al. 2011. Fluorescence ratiometry and fluorescence lifetime imaging: using a single molecular sensor for dual mode imaging of cellular viscosity. Ap J Am Chem Soc 133: 6626-6635 2 Cuecas, A, Cruces, J, Portillo, MC, Gonzalez, JM. 2013. Viscosity as a factor controlling thermostability of low-molecular weight biomolecules at elevated temperatures. RedEx 2013. Granada 3 Cuecas, A, Cruces, J, Galisteo-López, JF, Peng, X, Gonzalez, JM. 2016. Cellular viscosity in prokaryotes and thermal stability of low molecular weight biomolecules. Biophys J 111: 875-882

Proyecto Junta de Andalucia BIO288

Peer Reviewed

Country
Spain
Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 165
    download downloads 117
  • 165
    views
    117
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
165
117
Green