
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 10261/130857
The influence of N2 on CO2 adsorption was evaluated using a microporous biochar with a narrow pore size distribution. The adsorption isotherms of pure CO2 and N2 were measured at 0, 30, 50, and 70 °C up to 120 kPa and fitted to the Toth adsorption model. Dynamic breakthrough experiments were carried out in a fixed-bed adsorption unit using binary mixtures with compositions representative of different postcombustion streams (8–30% CO2) from ambient temperature to 70 °C. Dynamic adsorption experiments were simulated to validate the mathematical model of the adsorption process, as a necessary step for its later use for process design. The Ideal Adsorption Solution (IAS) theory, based on the pure component adsorption models, was used to account for competitive adsorption with satisfactory results. The information gathered in the present work will be used to extend the validity of the model to the adsorption of postcombustion streams containing H2O in part 2.
Work was carried out with financial support from the HiPerCap Project of the European Union 7th Framework Programme FP7 (2007-2013; Grant Agreement number: 60855). M.G.P. acknowledges funding from the CSIC (JAE-Doc program cofinanced by the European Social Fund). N.Q. acknowledges funding from the Government of the Principado de Asturias (Severo Ochoa Program). The authors also appreciate the support from the technical consultants of AspenTechnology Inc., M.M. and E.L.
Peer reviewed
Publicado
Publicado
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 48 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
views | 36 | |
downloads | 113 |