
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 10261/130285
Internet-based scenarios, like co-working, e-freelancing, or crowdsourcing, usually need supporting collaboration among several actors that compete to service tasks. Moreover, the distribution of service requests, i.e., the arrival rate, varies over time, as well as the service workload required by each customer. In these scenarios, coalitions can be used to help agents to manage tasks they cannot tackle individually. In this paper we present a model to build and adapt coalitions with the goal of improving the quality and the quantity of tasks completed. The key contribution is a decision making mechanism that uses reputation and adaptation to allow agents in a competitive environment to autonomously enact and sustain coalitions, not only its composition, but also its number, i.e., how many coalitions are necessary. We provide empirical evidence showing that when agents employ our mechanism it is possible for them to maintain high levels of customer satisfaction. First, we show that coalitions keep a high percentage of tasks serviced on time despite a high percentage of unreliable workers. Second, coalitions and agents demonstrate that they successfully adapt to a varying distribution of customers' incoming tasks. This occurs because our decision making mechanism facilitates coalitions to disband when they become non-competitive, and individual agents detect opportunities to start new coalitions in scenarios with high task demand. © 2015 Elsevier Ltd. All rights reserved.
The first author thanks the grant Formación de Profesorado Universitario (FPU), reference AP2010-1742. Arcos and Rodriguez-Aguilar thank projects COR (TIN2012-38876-C02-01/02) and Generalitat of Catalunya (2014 SGR-118). Work supported by the European Regional Development Fund (ERDF) and the Galician Regional Government under agreement for funding the Atlantic Research Center for Information and Communication Technologies (AtlantTIC)
Peer Reviewed
Coalitions, 330, Customer satisfaction, Autonomous agents, Crowdsourcing, Competitive environments, Decision making, Collaboration, Reputation
Coalitions, 330, Customer satisfaction, Autonomous agents, Crowdsourcing, Competitive environments, Decision making, Collaboration, Reputation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
views | 22 | |
downloads | 101 |