Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research Repository ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
EconStor
Research . 2020
Data sources: EconStor
versions View all 2 versions
addClaim

Understanding Persistence

Authors: Kelly, Morgan;

Understanding Persistence

Abstract

A large literature on persistence finds that many modern outcomes strongly reflect characteristics of the same places in the distant past. These studies typically combine unusually high t statistics with severe spatial autocorrelation in residuals, suggesting that some findings may be artefacts of underestimating standard errors or of fitting spatial trends. For 25 studies in leading journals, I apply three basic robustness checks against spatial trends and find that effect sizes typically fall by over half, leaving most well known results insignificant at conventional levels. Turning to standard errors, there is currently no data-driven method for selecting an appropriate HAC spatial kernel. The paper proposes a simple procedure where a kernel with a highly flexible functional form is estimated by maximum likelihood. After correction, standard errors tend to rise substantially for cross sectional studies but to fall for panels. Overall, credible identification strategies tend to perform no better than naive regressions. Although the focus here is on historical persistence, the methods apply to regressions using spatial data more generally.

Country
Ireland
Related Organizations
Keywords

Räumliche Statistik, Regressionsanalyse, Deep origins, Explanatory variables, 339, ddc:330, Standard errors, Autokorrelation, Streuungsmaß, Spatial noise, Robustness checks, Nichtparametrische Schätzung

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!