
handle: 10171/2285
It is natural to extend the Grothendieck theorem on completeness, valid for locally convex topological vector spaces, to Abelian topological groups. The adequate framework to do it seems to be the class of locally quasi-convex groups. However, in this paper we present examples of metrizable locally quasi-convex groups for which the analogue to the Grothendieck theorem does not hold. By means of the continuous convergence structure on the dual of a topological group, we also state some weaker forms of the Grothendieck theorem valid for the class of locally quasi-convex groups. Finally, we prove that for the smaller class of nuclear groups, BB-reflexivity is equivalent to completeness.
Materias Investigacion::Matemáticas, :Matemáticas [Materias Investigacion]
Materias Investigacion::Matemáticas, :Matemáticas [Materias Investigacion]
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
