
handle: 10062/57103
Loss reserving is a fundamental concept of actuarial mathematics. A traditionally used method is the chain ladder method. While it is a simple and robust method and works well in many cases, it also has its limitations. The chain ladder method is applied to aggregated data triangle, in a way similar to constructing histograms. Thus, a natural way to improve the approach is to use kernel density estimation instead. This leads to an extension called the continuous chain ladder (CCL) method. In CCL, the main choices a researcher has to make is the choice of the kernel function and the choice of bandwidth, which introduces a suitable level of smoothing. The first choice is usually made for practical or theoretical reasons and it usually has a minor impact on the performance of the estimator. However, the choice of bandwidth can significantly affect the performance of the kernel estimator. There are several possible methods suggested in the literature to choose the bandwidth. To find the optimal bandwidth, the cross-validation procedure is used. A common method for find the optimal bandwidth is the cross-validation. As it is a very time-consuming procedure, some rules of thumb that allow to skip the cross-validation step, can significantly increase the performance of CCL. In this thesis, the main goal is to find the patterns how different input scenarios affect the optimal bandwidths of the CCL model.
claim reserving, kernel smoothing, kahjureservide hindamine, continuous chain ladder, pidev ahel-redel, ahel-redel meetod, tuumaga silumine, chain ladder method
claim reserving, kernel smoothing, kahjureservide hindamine, continuous chain ladder, pidev ahel-redel, ahel-redel meetod, tuumaga silumine, chain ladder method
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
