<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.26342/2019-63-18
handle: 10045/96620
Este artículo presenta UnsupNMT, un proyecto de 3 años del que ha trascurrido la primera anualidad. UnsupNMT plantea un método radicalmente diferente de hacer traducción automática: la traducción no supervisada, es decir, basada exclusivamente en textos monolingües sin ningún recurso bilingüe. El método propuesto se basa en aprendizaje profundo de secuencias temporales combinado con los últimos avances en representación interlingual de palabras (“cross-lingual word embeddings”). Además de ser una propuesta propiamente innovadora, abre un nuevo paradigma de traducción automática con ramificaciones en otras disciplinas como el aprendizaje por transferencia (“transfer learning”). A pesar de las limitaciones actuales de la traducción automática no-supervisada, se espera que las técnicas desarrolladas tengan gran repercusión en áreas donde la traducción automática consigue peores resultados, como la traducción entre pares de idiomas con poco contacto, tales como alemán o ruso.
This article presents UnsupNMT, a 3-year project of which the first year has already been completed. UnsupNMT proposes a radically different approach to machine translation: unsupervised translation, that is, translation based on monolingual data alone with no need for bilingual resources. This method is based on deep learning of temporal sequences and uses cutting-edge interlingual word representations in the form of cross-lingual word embeddings. This project is not only a highly innovative proposal but it also opens a new paradigm in machine translation which branches out to other disciplines, such us transfer learning. Despite the current limitations of unsupervised machine translation, the techniques developed are expected to have great repercussions in areas where machine translation achieves worse results, such as translation between languages which have little contact, e.g. German and Russian.
UnsupNMT is a project funded by the Spanish Ministry of Economy, Industry and Competitiveness (TIN2017-91692-EXP).
Traducción Automática, Machine Translation, Deep Learning, Aprendizaje Profundo, Word Embedding, Lenguajes y Sistemas Informáticos, Word Embeddings
Traducción Automática, Machine Translation, Deep Learning, Aprendizaje Profundo, Word Embedding, Lenguajes y Sistemas Informáticos, Word Embeddings
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |