Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Unsupervised Neural Machine Translation, a new paradigm solely based on monolingual text

Authors: Artetxe, Mikel; Labaka Intxauspe, Gorka; Agirre Bengoa, Eneko;

Unsupervised Neural Machine Translation, a new paradigm solely based on monolingual text

Abstract

Este artículo presenta UnsupNMT, un proyecto de 3 años del que ha trascurrido la primera anualidad. UnsupNMT plantea un método radicalmente diferente de hacer traducción automática: la traducción no supervisada, es decir, basada exclusivamente en textos monolingües sin ningún recurso bilingüe. El método propuesto se basa en aprendizaje profundo de secuencias temporales combinado con los últimos avances en representación interlingual de palabras (“cross-lingual word embeddings”). Además de ser una propuesta propiamente innovadora, abre un nuevo paradigma de traducción automática con ramificaciones en otras disciplinas como el aprendizaje por transferencia (“transfer learning”). A pesar de las limitaciones actuales de la traducción automática no-supervisada, se espera que las técnicas desarrolladas tengan gran repercusión en áreas donde la traducción automática consigue peores resultados, como la traducción entre pares de idiomas con poco contacto, tales como alemán o ruso.

This article presents UnsupNMT, a 3-year project of which the first year has already been completed. UnsupNMT proposes a radically different approach to machine translation: unsupervised translation, that is, translation based on monolingual data alone with no need for bilingual resources. This method is based on deep learning of temporal sequences and uses cutting-edge interlingual word representations in the form of cross-lingual word embeddings. This project is not only a highly innovative proposal but it also opens a new paradigm in machine translation which branches out to other disciplines, such us transfer learning. Despite the current limitations of unsupervised machine translation, the techniques developed are expected to have great repercussions in areas where machine translation achieves worse results, such as translation between languages which have little contact, e.g. German and Russian.

UnsupNMT is a project funded by the Spanish Ministry of Economy, Industry and Competitiveness (TIN2017-91692-EXP).

Country
Spain
Related Organizations
Keywords

Traducción Automática, Machine Translation, Deep Learning, Aprendizaje Profundo, Word Embedding, Lenguajes y Sistemas Informáticos, Word Embeddings

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green