Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

Series de Dirichlet

Authors: Llinares Romero, Adrián;

Series de Dirichlet

Abstract

Las series de potencias constituyeron una herramienta esencial manejada por Weierstrass en el siglo XIX dentro de su programa de aritmetización del Análisis Matemático. Más tarde, a principios del siglo XX, en conexión con la función zeta de Riemann se inició un estudio intensivo de las series de Dirichlet, que constituyen el objeto fundamental de este trabajo fin de grado. En lo que a la estructura del trabajo se refiere, se empieza con una breve presentación histórica y posteriormente se procede a ilustrar el concepto de serie de Dirichlet, introduciendo sus propiedades inmediatas, como bien pueden ser la convergencia y la analiticidad de la forma más general posible, para luego centrarnos en el caso de las series de Dirichlet clásicas u ordinarias, haciendo un inciso en su estructura algebraica existente y en los productos de Euler. Finalmente y como no podía ser de otra forma, cerramos este estudio con una introducción a las características de la ya mencionada función zeta de Riemann y la archiconocida hipótesis de Riemann. Se adjuntan además tres anexos con los resultados necesarios para la correcta evolución del trabajo.

Country
Spain
Related Organizations
Keywords

Productos de Euler, Análisis Matemático, Funciones analíticas, Hipótesis de Riemann, Variable compleja, Abscisas de convergencia, Series de Dirichlet, Zeta de Riemann, Funciones L de Dirichlet

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green