Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Repositorio Instituc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

Intérprete "artificial" de lengua de signos

Authors: Torres López, Andrés;

Intérprete "artificial" de lengua de signos

Abstract

Este Trabajo de Fin de Grado (TFG) busca crear un modelo de Inteligencia Artificial (IA) basado en el uso de Redes Neuronales Convolucionales (CNN) que sea capaz de detectar las diferentes letras del alfabeto de la Lengua de Signos Americana (LSA) que sean estáticas, es decir, que no requieran movimiento para ser reconocidas. Para lograr este objetivo, lo primero que se hizo fue realizar una serie de tutoriales para obtener un mayor conocimiento sobre el funcionamiento de las CNN. Con este conocimiento adquirido, se comenzó a preparar el modelo añadiendo distintas capas convolucionales, capas densas y capas de aumento de datos, las cuales resultaron fundamentales para obtener buenos resultados, con una tasa de acierto de hasta el 94%. Una vez que el modelo estuvo preparado, se creó una interfaz de reconocimiento en tiempo real mediante el uso de la cámara. Tras la implementación conjunta del modelo con el funcionamiento de la cámara, se obtuvieron resultados muy satisfactorios en el reconocimiento de los signos del alfabeto de la LSA, logrando así el objetivo inicial de crear un modelo capaz de reconocer la LSA.

Country
Spain
Related Organizations
Keywords

Inteligencia Artificial, Lengua de Signos Americana, CNN

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities