Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ St Andrews Research ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
St Andrews Research Repository
Thesis . 2014
License: CC BY NC SA
versions View all 1 versions
addClaim

Galactic microlensing : binary-lens light curve morphologies and results from the Rosetta spacecraft bulge survey

Authors: Liebig, Christine Elisabeth;

Galactic microlensing : binary-lens light curve morphologies and results from the Rosetta spacecraft bulge survey

Abstract

For 20 years now, gravitational microlensing observations towards the Galactic bulge have provided us with a wealth of information about the stellar and planetary content of our Galaxy, which is inaccessible via other current methods. This thesis summarises work on two research topics that arose in the context of exoplanetary microlensing, but we take a step back and consider ways of increasing our understanding of more fundamental phenomena: firstly, stellar microlenses in our Galaxy that were stereoscopically observed and, secondly, the morphological variety of binary-lens light curves. In autumn 2008, the ESA Rosetta spacecraft surveyed the Galactic bulge for microlensing events. With a baseline of ∼1.6 AU between the spacecraft and ground observations, significant parallax effects can be expected. We develop a photometry pipeline to deal with a severely undersampled point spread function in the crowded fields of the Galactic bulge, making use of complementary ground observations. Comparison of Rosetta and OGLE light curves provides the microlens parallax π[subscript{E}] , which constrains the mass and distance of the observed lenses. The lens mass could be fully determined if future proper motion measurements were obtained, whereas the lens distance additionally requires the determination of the source distance. In the second project, we present a detailed study of microlensing light curve morphologies. We provide a complete morphological classification for the case of the equal-mass binary lens, which makes use of the realisation that any microlensing peak can be categorised as one of only four types: cusp-grazing, cusp-crossing, fold-crossing or fold-grazing. As a means for this classification, we develop a caustic feature notation, which can be universally applied to binary lens caustics. Ultimately, this study aims to refine light curve modelling approaches by providing an optimal choice of initial parameter sets, while ensuring complete coverage of the relevant parameter space.

Country
United Kingdom
Related Organizations
Keywords

Photometry, Astronomy, Microlensing (Astrophysics), Galactic microlensing, Gravitational lensing, Data analysis, Astronomical photometry, Theory, QB857.5G7L5, Astrophysics, 520

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities