Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

Switching the leverage switch

Authors: Marín Díazaraque, Juan Miguel; Romero, Eva; Lopes Moreira da Veiga, María Helena;

Switching the leverage switch

Abstract

This paper introduces a new asymmetric stochastic volatility model designed to capture how both the sign and magnitude of past shocks influence future volatility. The proposed Leverage Propagation Stochastic Volatility (LPSV) model extends traditional formulations by allowing the feedback mechanism to evolve over time, offering a more persistent and realistic representation of leverage effects than standard asymmetric stochastic volatility models. Based on the intuition that the impact of negative shocks on volatility unfolds gradually, rather than instantaneously, the model encodes this ``leverage propagation'' directly in its structure. Under Gaussian assumptions, we establish stationarity conditions and derive closed-form expressions for variance, kurtosis, and a novel leverage propagation function that quantifies delayed transmission of asymmetry. A Monte Carlo study confirms the robustness of Bayesian inference via Markov chain Monte Carlo (MCMC), even under heavy-tailed shocks. In empirical applications, the LPSV model captures volatility clustering and asymmetric persistence more effectively than competing alternatives, using daily financial returns from the German DAX and U.S. S&P 500. Moreover, the model captures prolonged volatility responses to non-financial shocks -illustrated through PM2.5 air pollution data from Madrid during Saharan dust events, demonstrating its broader relevance for environmental volatility modelling. These findings highlight the versatility of the model to trace the dynamics of delayed volatility sensitive to sign in different domains where understanding the persistence of risk is crucial.

Keywords

Bayesian inference, Volatility feedback, Heavy tails, Stochastic volatility, Estadística, Leverage effect, Asymmetric volatility

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green