Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Coastal Engineering ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Coastal Engineering Proceedings
Article . 1974 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1061/978087...
Article . 1974 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

FIELD MEASUREMENTS OF NEARSHORE VELOCITIES

Authors: David A. Huntley; Anthony J. Bowen;

FIELD MEASUREMENTS OF NEARSHORE VELOCITIES

Abstract

Two component electromagnetic flowmeters are being used as the basis of an apparatus to measure nearshore velocities on natural beaches. The flowmeters are mounted on free standing tripods, 1 m. base side and 0.3 m. high, to measure the two components of horizontal flow, and have been used in depths of up to 4 m. and up to 150 m. from the shoreline. The apparatus has proved both flexible and reliable on beaches ranging from steep shingle (slope ^ 0.13) to very shallow sand (slope'*' 0.01) and under a wide variety of wave conditions, including full storm waves on a beach of intermediate slope ( ^ 0.04). Results show that a single flowmeter can be used on a tidal beach to measure the variation of the flow field along a line perpendicular to the shoreline. In this way edge waves and steady nearshore circulation patterns have been detected. If several flowmeters are placed on a line perpendicular to the shoreline, the progress of individual waves can be followed as they pass over each flowmeter in turn, and hence propagation speeds, changes of wave form and the development of lower frequency wave motion close to the shoreline can be studied.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Top 10%
Average
gold