Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://era.library....arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.7939/r3m...
Report . 1992
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Iterated Greedy Graph Coloring and the Difficulty Landscape

Authors: Culberson, Joseph;

Iterated Greedy Graph Coloring and the Difficulty Landscape

Abstract

Technical report TR92-07. Many heuristic algorithms have been proposed for graph coloring. The simplest is perhaps the greedy algorithm. Many variations have been proposed for this algorithm at various levels of sophistication, but it is generally assumed that the coloring will occur in a single attempt. We note that if a new permutation of the vertices is chosen which respects the independent sets of a previous coloring, then applying the greedy algorithm will result in a new coloring in which the number of colors used does not increase, yet may decrease. We introduce several heuristics for generating new permutations that are fast when implemented and effective in reducing the coloring number. The resulting Iterated Greedy algorithm(IG) can obtain colorings in the range 100 to 103 on graphs in G(1000,1/2). More interestingly, it can optimally color k-colorable graphs with k up to 60 and n=1000, exceeding results of anything in the literature for these graphs. We couple this algorithm with several other coloring algorithms, including a modified Tabu search, and one that tries to find large independent sets using a pruned backtrack. With these combined algorithms we find 86 and 87 colorings for G(1000,1/2). Finally, we explore the areas of difficulty in probabilistic graph space under a natural parameterization. Specifically, we check our system on k-colorable graphs in G(300,p,k) for 0.05<=p<=0.95 and 2<=k<=105. We find a narrow ridge where the algorithms fail to find the specified coloring, but easy success everywhere else. | TRID-ID TR92-07

Country
Canada
Related Organizations
Keywords

Tabu, Independent sets, Graph coloring algorithms, Random graphs

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green
Related to Research communities