
doi: 10.7939/r3m32nh6q
Technical report TR92-07. Many heuristic algorithms have been proposed for graph coloring. The simplest is perhaps the greedy algorithm. Many variations have been proposed for this algorithm at various levels of sophistication, but it is generally assumed that the coloring will occur in a single attempt. We note that if a new permutation of the vertices is chosen which respects the independent sets of a previous coloring, then applying the greedy algorithm will result in a new coloring in which the number of colors used does not increase, yet may decrease. We introduce several heuristics for generating new permutations that are fast when implemented and effective in reducing the coloring number. The resulting Iterated Greedy algorithm(IG) can obtain colorings in the range 100 to 103 on graphs in G(1000,1/2). More interestingly, it can optimally color k-colorable graphs with k up to 60 and n=1000, exceeding results of anything in the literature for these graphs. We couple this algorithm with several other coloring algorithms, including a modified Tabu search, and one that tries to find large independent sets using a pruned backtrack. With these combined algorithms we find 86 and 87 colorings for G(1000,1/2). Finally, we explore the areas of difficulty in probabilistic graph space under a natural parameterization. Specifically, we check our system on k-colorable graphs in G(300,p,k) for 0.05<=p<=0.95 and 2<=k<=105. We find a narrow ridge where the algorithms fail to find the specified coloring, but easy success everywhere else. | TRID-ID TR92-07
Tabu, Independent sets, Graph coloring algorithms, Random graphs
Tabu, Independent sets, Graph coloring algorithms, Random graphs
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
