
doi: 10.7916/d81z4b7s , 10.7916/d86m3dr2
Many different monitoring systems have been created to identify system state conditions to detect or prevent a myriad of deliberate attacks, or arbitrary faults inherent in any complex system. Monitoring systems are also vulnerable to attack. A stealthy attacker can simply turn off or disable these monitoring systems without being detected; he would thus be able to perpetrate the very attacks that these systems were designed to stop. For example, many examples of virus attacks against antivirus scanners have appeared in the wild. In this paper, we present a novel technique to "monitor the monitors" in such a way that (a) unauthorized shutdowns of critical monitors are detected with high probability, (b) authorized shutdowns raise no alarm, and (c) the proper shutdown sequence for authorized shutdowns cannot be inferred from reading memory. The techniques proposed to prevent unauthorized shut down (turning off) of monitoring systems was inspired by the duality of safety technology devised to prevent unauthorized discharge (turning on) of nuclear weapons.
Computer science, 004, 620
Computer science, 004, 620
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
