Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Caltech Authors (Cal...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.7907/zaq...
Other literature type . 1963
Data sources: Datacite
https://dx.doi.org/10.7907/wgh...
Doctoral thesis . 1964
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the Doppler Effect in a Medium

Authors: Lee, K. S. H.;

On the Doppler Effect in a Medium

Abstract

The problem of calculating the frequency of the wave scattered by a body moving in a medium is formulated from field-theoretic considerations. The Doppler equation for a homogeneous dispersive medium is obtained on the basis of the fact that the frequency and the wave vector of a plane wave form a 4-vector. It is found that the solutions of the Doppler equation can be classified into two kinds. In one kind, the solutions are close to the frequency of the incident wave. In the other kind they appear near the poles of the refractive index of the medium on the ω-axis. In the case of an isotropic plasma, the monochromaticity of the incident wave is shown to be preserved after the wave is scattered by a moving body. However, in the case of a magneto-active plasma, the scattered wave contains more than one frequency for a monochromatic incident wave. The physical interpretations of these frequencies are given. In an inhomogeneous medium the Doppler equation has to be derived from a different starting point. The crucial point of the derivation is to perform spectral decompositions of the transformed fields and then to apply, under the assumption of gradual inhomogeneity, the method of stationary phase to determine the critical points. It is shown how the phase functions of the fields can be obtained by transforming Maxwell's equations into equations of Riccati-type. Approximate solutions of the Doppler equation are obtained for isotropic as well as for gyroelectric stratified media.

This research was supported by the U. S. Air Force through the Air Force Office of Scientific Research of the Air Research and Development Command, under Contract No. AF49(638)-1266. Reproduction in whole or in part is permitted for any purpose of the United States Government. The author is grateful to Professor C. H. Papas for his continued guidance and encouragement during the course of this work. Special thanks are also due to Mrs. R. Stratton for typing the text, to A. D. Jacobson for his criticism, and to P. Daly for reading the text.

Submitted - TR000410.pdf

Country
United States
Related Organizations
Keywords

Electrical Engineering, 510, 620

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green