Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Liriasarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Lirias
Doctoral thesis . 2005
Data sources: Lirias
https://dx.doi.org/10.7907/ttw...
Doctoral thesis . 2005
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Blood flow and the mammalian embryo

Authors: Jones, Elizabeth;

Blood flow and the mammalian embryo

Abstract

Hemodynamics, or blood fluid dynamics, is of great importance in vascular biology and its role is well recognized in events ranging from atherosclerosis to wound healing. The importance of hemodynamics during embryonic development, however, is less clear. The early vertebrate vasculature is established through two processes; vasculogenesis, which is the de novo formation of vessels and angiogenesis, which is the sprouting of new vessels from existing vessels and the remodeling of existing vessels. The latter process, angiogenesis and vascular remodeling, is dependent on blood flow and does not occur if cardiac output is blocked. As well, if blood flow is altered, such as with mutations that affect cardiac contraction, the early vessels also fail to remodel. Flowing blood imparts a physical force, called shear stress, on the endothelial lining of the blood vessels. Many genes known to be regulated by shear stress are important for vascular remodeling in the embryo. In this work, we investigate the role of shear stress on the remodeling process. Studying the role of shear stress in embryos requires the ability to measure changes in both fluid dynamics and vascular morphology as well as methods to alter shear stress levels. In this work, we use an optical technique for the quantitative analysis of hemodynamics during early organogenesis in the mouse embryo. We established the morphological changes that occur in the vasculature during remodeling and link these to the fluid dynamics that are present. We establish the mechanical cues that are available to the endothelial cells and the type of flow present at various stages of development. In order to understand how these mechanical cues affect embryonic development, we examine altered shear stress during development using a mutant mouse model in which the atrial cardiac contraction is lacking as well as inducing specific changes in shear stress through chemical manipulation of the embryonic cardiovascular system. These studies establish a link between the pattern of blood flow within the vasculature and the stage of cardiovascular development and enable analysis of the influence of mechanical forces during development.

Related Organizations
Keywords

Embryology, Confocal Microscopy, Blood Fluid Dynamics, Vasculogenesis, Hemodynamics, Cardiovascular Development, Angiogenesis, Chemical Engineering, FOS: Chemical engineering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green