Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PubMed Centralarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cureus
Article . 2022 . Peer-reviewed
Data sources: Crossref
Cureus
Article
versions View all 3 versions
addClaim

Signal-Induced Inhibition of Telomerase Activity in HL60 Cancer Cells by Signal Transduction Using the Biophysically Activated Regulative Molecule 31 (RM31): A Pilot Study

Authors: Klein, Claudia B;

Signal-Induced Inhibition of Telomerase Activity in HL60 Cancer Cells by Signal Transduction Using the Biophysically Activated Regulative Molecule 31 (RM31): A Pilot Study

Abstract

In this pilot study, we report the use of a novel, patented biophysical technology, which enables intranuclear access and cell nucleus stimulation, via the signal of the biophysically activated regulative molecule 31 (RM31). RM31 is the name of an isolated natural molecule found in the human body and is involved in many cellular mechanisms. We used a specific low electromagnetic field frequency to activate the RM31 molecule, which leads to specific signal transduction, to investigate the effect of telomerase activity in HL60 cancer cells. Our results revealed a dramatic inhibition in telomerase activity, a 99.5% decrease within 72 hours, with avoidance of subsequent reactivation, due to the simultaneous inhibition of human telomerase reverse transcriptase (hTERT).

Keywords

Genetics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities
Cancer Research