Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cureusarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cureus
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cureus
Article . 2021 . Peer-reviewed
Data sources: Crossref
Cureus
Article
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Loudness of Suctioning in the Ear Canal

Authors: Colin Byrd; Olga Santiago; Carl Shermetaro; Eytan Keidar;

The Loudness of Suctioning in the Ear Canal

Abstract

Aim To determine the loudness of suctioning in the ear canal with different-sized suctions and various mediums. Aural microsuctioning is commonly used in the otolaryngologist's office setting for cerumen removal and aural toilet. We hypothesize that the intensity of the sound would increase with increasing viscosity of the medium and increasing suction diameter. Methods The intensity of the sound generated was measured while suctioning air, water, and yogurt on cadaveric temporal bones with size 7 and 5 Frazier suctions. This was performed with one measurer and one operator. Under otomicroscopy, the operator would suction the ear canal and the measurer would record the intensity of the sound with a sound decibel meter placed at the lateral and posterior external auditory canal. Data was collected with two separate operators and measurers to aid with inter-rater reliability. Results There was a total of 240 repeated observations (10 cadavers, 3 mediums, 2 suction devices; 2 investigators). The range of the maximum peak intensity ranged from 63.0 dB to 100.0 dB. The lowest peak intensity of decibels was recorded in air with the size 5 Frazier suction; and the highest measured was with the size 5 Frazier suction in yogurt. Statistically significant differences were found only in the measurements in air. Conclusion Our investigation found that increasing peak sound intensities were generated by increasing the viscosity of the fluid medium that was being suctioned. However, the smaller sized diameter suction actually generated louder sound intensities than the larger diameter suction with higher viscosity fluid media, but this was not statistically significant.

Keywords

Otolaryngology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold