Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PeerJarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PeerJ
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PeerJ
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PeerJ
Article
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PeerJ
Article . 2020
Data sources: DOAJ
PeerJ Preprints
Other literature type . 2020
License: CC BY
Data sources: PeerJ Preprints
versions View all 5 versions
addClaim

Drought-induced reduction in methane fluxes and its hydrothermal sensitivity in alpine peatland

Authors: Wu, Haidong; Yan, Liang; Li, Yong; Zhang, Kerou; Hao, Yanbin; Wang, Jinzhi; Zhang, Xiaodong; +3 Authors

Drought-induced reduction in methane fluxes and its hydrothermal sensitivity in alpine peatland

Abstract

Accurate estimation of CH 4 fluxes in alpine peatland of the Qinghai-Tibetan Plateau under extreme drought is vital for understanding the global carbon cycle and predicting future climate change. However, studies on the impacts of extreme drought on peatland CH 4 fluxes are limited. To study the effects of extreme drought on CH 4 fluxes of the Zoige alpine peatland ecosystem, the CH 4 fluxes during both extreme drought treatment (D) and control treatment (CK) were monitored using a static enclosed chamber in a control platform of extreme drought. The results showed that extreme drought significantly decreased CH 4 fluxes in the Zoige alpine peatland by 31.54% ( P < 0.05). Extreme drought significantly reduced the soil water content (SWC) ( P < 0.05), but had no significant effect on soil temperature (Ts). Under extreme drought and control treatments, there was a significant negative correlation between CH 4 fluxes and environmental factors (Ts and SWC), except Ts, at a depth of 5cm ( P < 0.05). Extreme drought reduced the correlation between CH 4 fluxes and environmental factors and significantly weakened the sensitivity of CH 4 fluxes to SWC ( P < 0.01). Moreover, it was found that the correlation between subsoil (20 cm) environmental factors and CH 4 fluxes was higher than with the topsoil (5, 10 cm) environmental factors under the control and extreme drought treatments. These results provide a better understanding of the extreme drought effects on CH 4 fluxes of alpine peatland, and their hydrothermal impact factors, which provides a reliable reference for peatland protection and management.

Related Organizations
Keywords

QH301-705.5, R, Alpine peatland, Ecosystem Science, Extreme drought, Medicine, Biology (General), Hydrothermal sensitivity, CH4 fluxes

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Average
Green
gold