
Biomonitoring is a common method to monitor environmental change in river ecosystems, a key advantage of biomonitoring over snap-shot physicochemical monitoring is that it provides a more stable, long-term insight into change that is also effects-based. In New Zealand, the main biomonitoring method is a macroinvertebrate sensitivity scoring index, with little established methods available for biomonitoring of fish. This study models the contemporary distribution of common freshwater fish and then uses those models to predict freshwater fish assemblages for each river reach under reference conditions. Comparison of current fish assemblages with those predicted in reference conditions (as observed/expected (O/E) ratios) may provide a suitable option for freshwater fish biomonitoring. Most of the fish communities throughout the central North Island and lower reaches show substantial deviation from the modelled reference community. Most of this deviation is explained by nutrient enrichment, followed by downstream barriers (i.e. dams) and loss of riparian vegetation. The presence of modelled introduced species had relatively little impact on the presence of the modelled native fish. The maps of O/E fish assemblage may provide a rapid way to identify potential restoration sites.
Fish barriers, QH301-705.5, R, Nutrients, 333, Observed/expected, Exotic fish, Aquaculture, Fisheries and Fish Science, Medicine, Ecosystem health, Biology (General), Riparian
Fish barriers, QH301-705.5, R, Nutrients, 333, Observed/expected, Exotic fish, Aquaculture, Fisheries and Fish Science, Medicine, Ecosystem health, Biology (General), Riparian
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
