Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PeerJarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PeerJ
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PeerJ
Article . 2024
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PeerJ
Article . 2024
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-IRD
Article . 2024
Data sources: HAL-IRD
PeerJ Preprints
Other literature type . 2024
License: CC BY
Data sources: PeerJ Preprints
versions View all 6 versions
addClaim

Phylogenetic relationships of Neogene hamsters (Mammalia, Rodentia, Cricetinae) revealed under Bayesian inference and maximum parsimony

Authors: Dirnberger, Moritz; Peláez-Campomanes, Pablo; López-Antoñanzas, Raquel;

Phylogenetic relationships of Neogene hamsters (Mammalia, Rodentia, Cricetinae) revealed under Bayesian inference and maximum parsimony

Abstract

There is an ongoing debate about the internal systematics of today’s group of hamsters (Cricetinae), following new insights that are gained based on molecular data. Regarding the closely related fossil cricetids, however, most studies deal with only a limited number of genera and statements about their possible relationships are rare. In this study, 41 fossil species from the Late Miocene to the Pliocene, belonging to seven extinct cricetine genera, Collimys, Rotundomys, Neocricetodon, Pseudocricetus, Cricetulodon, Apocricetus and Hattomys are analysed in a phylogenetic framework using traditional maximum parsimony and Bayesian inference approaches. Following thorough model testing, a relaxed-clock Bayesian inference analysis is performed under tip-dating to estimate divergence times simultaneously. Furthermore, so-called ‘rogue’ taxa are identified and excluded from the final trees to improve the informative value of the shown relationships. Based on these resulting trees, the fit of the topologies to the stratigraphy is assessed and the ancestral states of the characters are reconstructed under a parsimonious approach and stochastic character mapping. The overall topologies resulting from Bayesian and parsimonious approaches are largely congruent to each other and confirm the monophyly of most of the genera. Additionally, synapomorphies can be identified for each of these genera based on the ancestral state reconstructions. Only Cricetulodon turns out to be paraphyletic, while ‘Cricetulodon’ complicidens is a member of Neocricetodon. Lastly, this work makes a contribution to a debate that went on for decades, as the genus Kowalskia can be confirmed as junior synonym of Neocricetodon.

Country
France
Keywords

580, 570, QH301-705.5, Fossils, [SDV]Life Sciences [q-bio], Bayesian inference, R, Rodentia, Bayes Theorem, Evolutionary Studies, [SDV] Life Sciences [q-bio], Tip-dating, Cricetinae, Morphological clock, Medicine, Animals, Biology (General), Maximum parsimony, Phylogeny

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold