Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PeerJ Computer Scien...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PeerJ Computer Science
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PeerJ Computer Science
Article . 2023
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CONICET Digital
Article . 2023
License: CC BY
Data sources: CONICET Digital
https://dx.doi.org/10.60692/50...
Other literature type . 2023
Data sources: Datacite
https://dx.doi.org/10.60692/76...
Other literature type . 2023
Data sources: Datacite
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-objective genetic programming strategies for topic-based search with a focus on diversity and global recall

استراتيجيات البرمجة الجينية متعددة الأهداف للبحث القائم على الموضوع مع التركيز على التنوع والاستدعاء العالمي
Authors: Cecilia Baggio; Carlos M. Lorenzetti; Rocío L. Cecchini; Ana Gabriela Maguitman;

Multi-objective genetic programming strategies for topic-based search with a focus on diversity and global recall

Abstract

Topic-based search systems retrieve items by contextualizing the information seeking process on a topic of interest to the user. A key issue in topic-based search of text resources is how to automatically generate multiple queries that reflect the topic of interest in such a way that precision, recall, and diversity are achieved. The problem of generating topic-based queries can be effectively addressed by Multi-Objective Evolutionary Algorithms, which have shown promising results. However, two common problems with such an approach are loss of diversity and low global recall when combining results from multiple queries. This work proposes a family of Multi-Objective Genetic Programming strategies based on objective functions that attempt to maximize precision and recall while minimizing the similarity among the retrieved results. To this end, we define three novel objective functions based on result set similarity and on the information theoretic notion of entropy. Extensive experiments allow us to conclude that while the proposed strategies significantly improve precision after a few generations, only some of them are able to maintain or improve global recall. A comparative analysis against previous strategies based on Multi-Objective Evolutionary Algorithms, indicates that the proposed approach is superior in terms of precision and global recall. Furthermore, when compared to query-term-selection methods based on existing state-of-the-art term-weighting schemes, the presented Multi-Objective Genetic Programming strategies demonstrate significantly higher levels of precision, recall, and F1-score, while maintaining competitive global recall. Finally, we identify the strengths and limitations of the strategies and conclude that the choice of objectives to be maximized or minimized should be guided by the application at hand.

Keywords

Artificial intelligence, LEARNING COMPLEX QUERIES, Topic-based search, Genetic Programming, Weighting, Genetic programming, Selection (genetic algorithm), https://purl.org/becyt/ford/1.2, Similarity (geometry), Diversity preservation, Multi-Objective Optimization, Physics, GLOBAL RECALL, INFORMATION RETRIEVAL, Global recall, FOS: Philosophy, ethics and religion, Multi-objective genetic programming, Computational Theory and Mathematics, Application of Genetic Programming in Machine Learning, Physical Sciences, Medicine, DIVERSITY PRESERVATION, Radiology, Quantum mechanics, Semantic Genetic Programming, Artificial Intelligence, Automatic query formulation, Machine learning, Image (mathematics), Entropy (arrow of time), Information retrieval, Swarm Intelligence Optimization Algorithms, https://purl.org/becyt/ford/1, Data mining, TOPIC-BASED SEARCH, Precision and recall, Global Optimization, MULTI-OBJECTIVE GENETIC PROGRAMMING, Linguistics, QA75.5-76.95, Computer science, INFORMATION-THEORETIC FITNESS FUNCTIONS, Philosophy, AUTOMATIC QUERY FORMULATION, Electronic computers. Computer science, Computer Science, Nature-Inspired Algorithms, FOS: Languages and literature, Recall, DIVERSITY MAXIMIZATION, Multiobjective Optimization in Evolutionary Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold
Related to Research communities