Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Japanese Journal of ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Japanese Journal of Applied Physics
Article . 2011 . Peer-reviewed
License: IOP Copyright Policies
Data sources: Crossref
Japanese Journal of Applied Physics
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reactive Ion Etching of Carbon Nanowalls

Authors: Mineo Hiramatsu; Shingo Kondo; Masaru Hori; Yudai Miyawaki; Hiroki Kondo; Hajime Sasaki; Hiroyuki Kano;

Reactive Ion Etching of Carbon Nanowalls

Abstract

Two-dimensionally standing graphene sheets, i.e., carbon nanowalls (CNWs), were synthesized on a Si substrate employing a capacitively coupled fluorocarbon plasma-enhanced chemical vapor deposition system together with H radical injection. To apply CNWs in electronic devices and/or membrane filters, we have demonstrated the reactive ion etching (RIE) of CNWs. RIE employing H2/N2 gases showed that the CNW films were anisotropically etched at a relatively high rate of more than 250 nm/min. However, the 10-nm-thick interface layer between a CNW film and the Si substrate remained and the interface layer was not completely etched. In contrast, RIE employing Ar/H2 gases enabled us to completely remove the interface layer. Ar/H2 RIE was also carried out from the bottom surface of CNW films after exfoliating them from the Si substrate. As a result, a free-standing CNW film of 550 nm thickness without an interface layer as a membrane filter was successfully formed.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Average
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?