
The superconductor will generate a magnetic field inside the superconductor during its rotation, which is called the London moment. At present, a variety of theories including London theory and G-L theory have explained the generation mechanism of London moment. Most of these theories essentially believe that the superconducting electrons in the surface layer of the rotating superconductor lag behind and have a net residual current. The London moment is produced by the net residual current on the surface of the rotating superconductor. However, there is still no clear theoretical explanation for the motion lag of the outermost superconducting electrons in rotating superconductors. In this paper the charged particles in the rotating system and the Berry phase of the superconductor in the rotating superconductor are analyzed. The results show that the Berry curvature of the superconductor has the same expression form as the London moment, indicating that the London moment may be the inverse effect of A-B effect, which is a macroscopic quantum effect based on Berry phase.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
