Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Acta Physica Sinicaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Acta Physica Sinica
Article . 2015 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Acta Physica Sinica
Article
License: CC BY
Data sources: UnpayWall
versions View all 1 versions
addClaim

Multi-parameter photoacoustic imaging and its application in biomedicine

Authors: null Yin Jie; null Tao Chao; null Liu Xiao-Jun;

Multi-parameter photoacoustic imaging and its application in biomedicine

Abstract

Photoacoustic imaging is a hybrid imaging technique based on the photoacoustic effect. As a non-invasive and non-ionizing modality, photoacoustic imaging takes the both merits of the conventional acoustic imaging and optical imaging. Firstly, the contrast of photoacoustic imaging primarily depends on the optical absorption. The unique optical spectra of atoms and molecules makes optical methods to be a widely used modality to probe the molecular and chemical information of biological tissue. Therefore, photoacoustic imaging has its inherent advantage in high-contrast functional and physiological imaging of biological tissue, as well as the optical imaging method. Secondly, photoacoustic imaging has the high spatial resolution in deep tissue in comparison with the pure optical imaging method. Since the strongly optical scattering in biological tissue, pure optical imaging method is difficult to obtain the high-resolution image in the tissue deeper than ~1 mm. Whereas, acoustic wave suffers much less from scattering than optical wave, the acoustic scattering coefficient is about 2-3 orders of magnitude less than the optical scattering coefficient. Photoacoustic imaging can achieve a fine resolution in deep tissue, which equivalent to 1/200 of the imaging depth. Thirdly, non-ionizing radiation used for photoacoustic imaging is much safer than X-ray. Moreover, the low-temperature rises make photoacoustic imaging be safely used in live tissue. A laser-induced temperature rise of 1 mK yields an initial pressure of ~800 Pa in soft tissue. Such a sound pressure level has reached the sensitivities of typical ultrasonic transducers. Fourthly, photoacoustic imaging has the ability of extracting multiple contrasts, including biochemical parameter, biomechanical parameter, blood velocity distribution, tissue temperature, and microstructure information. Photoacoustic imaging can capture more specific and reliable information about the tissue structure, function, metabolism, molecule, and gene. As a result, photoacoustic imaging has become one of the fastest growing biomedical imaging techniques in the past decade.#br#In this review, we will explain photoacoustic effect and the principle of photoacoustic imaging. Then, we introduce the two classical photoacoustic imaging schemes, including photoacoustic tomography and photoacoustic microscopy. Their main specifications, such as resolution, are also preflents. We review the ability of photoacoustic imaging in extracting multiple contrasts and discuss their biomedicine applications. In addition, we also introduce the remarkable breakthroughs in super-resolution photoacoustic imaging. Finally, we look the further development and the limitations of photoacoustic imaging.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold