
doi: 10.7155/jgaa.00567
Let $G=(V,E)$ be a graph and let $S\subseteq V$ be a subset of its vertices. If the subgraph of $G$ induced by $V\setminus S$ is acyclic, then $S$ is said to be a decycling set of $G$. The size of a smallest decycling set of $G$ is called the decycling number of $G$. Determining the decycling number of a graph $G$ is NP-hard, even if $G$ is bipartite. We describe a tabu search procedure that generates decycling sets of small size for arbitrary bipartite graphs. Tests on challenging families of graphs show that the proposed algorithm improves many best-known solutions, thus closing or narrowing the gap to the best-known lower bounds.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
