
We extend the work of Kreiss and Morton to prove: for some constant K(m), where m is the order of the matrix A, $|A^(n)v| \leq C(v)$ for all n $geq$ 0 and |v| = 1 implies that $|{SAS}^{-1}| \leq 1$ for some S with $|S^{-1}| \leq 1$, |Sv| $\leq$ k(m)C(v). We establish the analogue for exponentials $e^{Pt}$, and use it to construct the minimal Hilbert norm dominating $L_2$ in which a given partial differential equation with constant coefficients is well-posed.
510.mathematics, partial differential equations, Article
510.mathematics, partial differential equations, Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
