Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2024
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fractional Vertex Cover Reliability of Graphs

Fractional vertex cover reliability of graphs
Authors: Brown, David; Clawson, Caitlynn; Erey, Aysel; Garcia, Rudy; Green, Carter; Hein, Derek; Powell, Samuel;

Fractional Vertex Cover Reliability of Graphs

Abstract

Let G be a graph and let 0 ≤ p , q and p + q ≤ 1 . Suppose that each vertex of G gets a weight of 1 with probability p , 1 2 with probability q , and 0 with probability 1 − p − q , and vertex weight probabilities are independent. The \textit{fractional vertex cover reliability} of G , denoted by FRel ( G ; p , q ) , is the probability that the sum of weights at the end-vertices of every edge in G is at least 1 . In this article, we first provide various computational formulas for FRel ( G ; p , q ) considering general graphs, basic graphs, and graph operations. Secondly, we determine the graphs which maximize FRel ( G ; p , q ) for all values of p and q in the classes of trees, connected unicyclic and bicyclic graphs with fixed order, and determine the graphs which minimize it in the classes of trees and connected unicyclic graphs with fixed order. Our results on optimal graphs extend some known results in the literature about independent sets, and the tools we developed in this paper have the potential to solve the optimality problem in other classes of graphs as well.

Keywords

optimal graphs, reliability, fractional graph theory, Fractional graph theory, fuzzy graph theory, vertex cover

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!